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On the uniform vorticity in a high Reynolds number flow
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Abstract. A method is proposed for determining the value of the uniform vorticity (k) in the inviscid region of a
high Reynolds number (Re) flow with closed streamlines. An asymptotic treatment of the area integral of the
Navier-Stokes equations over the enclosed region leads to a constraint involving the core vorticity; this requires the
solution of the momentum equations at 0(1) and O(Re-" 2) both in the core and in the surrounding boundary
layers, although we are subsequently able to show that, under the assumption that the core vorticity at 0(8) is also
constant, the value of w0 depends only on the flow at 0(1). The analysis is verified numerically for the case where
the boundary is an ellipse, and is also shown to be in agreement with the only case for which an analytic solution is
available, namely when the enclosing boundary is circular. The validity of the above-mentioned assumption is also
discussed.

1. Introduction

In this paper, we consider the steady, two-dimensional, laminar motion within a closed
region which is driven by a prescribed velocity distribution along the external boundary. It is
well-known that, if the Reynolds number is large, the resulting motion will be one in which
the streamlines are closed and in which there will be an inviscid core of uniform vorticity,
separated from the moving boundary by viscous boundary layers [1]; this overall picture has
been confirmed by numerical solutions of the Navier-Stokes equations, most frequently for
the square cavity ([2, 4,6,7, 11, 13, 14]), but occasionally for other geometries [5]. Such
solutions are able to provide a numerical value for the uniform vorticity, although the
question remains as to whether the core vorticity can be determined without recourse to a
numerical solution of the full Navier-Stokes equations, but rather by considering only the
boundary-layer equations. This is indeed the case when the boundary is circular [1]; the case
of a non-circular boundary was considered by Riley [9], and a criterion for determining the
core vorticity was derived in terms of a matching condition at the outer edge of the boundary
layer between the inviscid core flow and the boundary-layer flow. The aim of this paper,
therefore, is to propose an alternative method for determining the core vorticity for high
Reynolds number flow in a closed region.

In Section 2, we use asymptotic methods to derive from the Navier-Stokes equations an
integral relation which determines the value of the core vorticity inside a region of arbitrary
shape, whilst in Section 3 we show how to calculate the various terms that constitute the
relation, namely the velocity fields at 0(1) and O(Re-" 2 ). In Section 4 we demonstrate, by
means of boundary-layer computations, that our theory produces a result that is consistent
with that obtained by Batchelor [1] for the case of a circular boundary; in addition, our
computed solutions for a family of ellipses are shown to be consistent with results obtained
by Riley [9]. In Section 5, we compare the present paper with earlier work, and draw
conclusions.
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C

Fig. 1. Geometry for closed-streamline flow.

2. Formulation

Consider a region S surrounded by a closed curve C, as in Fig. 1; C represents a boundary,
whose steady motion induces fluid flow within S and across which there is no normal outflow.
The tangential motion of the boundary is prescribed and we assume that the Reynolds
number (Re) is large; as usual, Re = pUat, where p is the fluid density, U is a typical
velocity scale, a is a typical length scale for the region S and Ax is the coefficient of viscosity.
The governing flow equations are then

aui
i = 0, i= 1,2 (1)

(x i

aui aj (2)
u i,j=1,2 (2)
ax. axi

where (ui)i=l, 2 are the components of the velocity field, (x,),i=, 2 are Cartesian position
coordinates and ij is the stress tensor, which is given by

a, = -p6i + T ,

where p is the pressure, sij is the Kronecker delta and rTi is the deviatoric stress tensor, which
in turn is given by

1 (u+i auj
Tij =-Re +ax, axi

The boundary conditions for the flow are then

uini = O onC, (3)

where (ni)i=1,2 are the Cartesian components of the outward normal, n, to C, and

uiti = U s onC (4)

where (ti)i=,,2 are the components of the tangent, t, to C and Us is the prescribed tangential
velocity.
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Rewriting (2), with the help of (1) as

a(ujui) ao-%
x--- ax- X' i, i=1, 2

we obtain, on applying the divergence theorem to S, and using (3),

cO ijnids =; Ujnjds

=0. (5)

Since Re > 1, it is appropriate to adopt an asymptotic approach and, to this end, we write
the asymptotic expansions for p and (i)i= 1, 2 in the core of S as

P =Po + 6p + . ,

Ui = U0i + 5Uli + . . . ,

where 62 = 1/Re, and consider (5) at leading order. However, the leading order terms are
not immediately obvious, given that we are considering p and ((auiOlxj) + (ujlaxi)) in the
boundary layer, where they are not necessarily 0(1) as they would be in the core.
Nevertheless, it is well known that uini - 6 and uiti - 1 in the boundary layer, and that p, to
leading order, is simply the inviscid Euler pressure, which satisfies

(UojUoi) po .
=- - Ili = 1, 2,

axi Oxi

whence, as in (5), we obtain

cPoni ds=O, i=1,2. (6)

In order to determine the magnitude of ((auoi/xj) + (duoj/lxi)) at C, we write down the
asymptotic expansions for (U, V), the tangential and normal components of velocity in the
boundary layer, as

U = U + U + .. ,

V=Vo +2V, + .. .,

with the pressure p as

P = Po + 56P + · .

Next, we consider the curvilinear coordinate system (s, 52), where (l is tangential to C and
e2 is normal to C, so that 2 = C, with c constant, corresponds to C itself. In the first
instance, it is required to show that (5) may be reduced to the pair of equations

{C (oa22nl + oIl2n2) ds = 0, (7)
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(8){C (2 2n2 - o-e2nl) ds = 0,

where nel and n2 are the direction cosines of the normal to C, and re e2 and o22 are given
respectively by

2 2 =-p + 282(1 au 2 + ul ah 2
h52 O2 h\h2 an '

where u and u2 are the first and second components of the velocity field and h1 and h2 are
the associated scale factors.

With reference to Fig. 2, the scalar product of an arbitrary unit vector c with the vector of
which the components are c ijnj ds gives

c ciojn1 ds = 0.

Now, taking components in the (, 2)-system, we obtain, since n = 0 and n = -1,

C (Ctltak2 + C(c2262) ds = 0;

next, taking (ci)i=1 2 along the xl-axis gives

1

n

C% 1

C

c2

Fig. 2. Plot of curvilinear orthogonal coordinate system.
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Cl = -n 2 , C2= -nl

which leads to (7), whilst taking (ci),=l, 2 along the x2 -axis gives

Ce = n , C6 2 =-n 2

and thence (8), as required.
Introducing a streamfunction, ¢i, given by

1 a 1 a
Ul = h O 2 ' U2 =- h g '

and writing the appropriate asymptotic expansion for q as

= 0 + a1 + .' .

we proceed by writing t'r~ 2 and aC262 in terms of ¢t, and 62 as

s2(hl a 1 dim h2 a + 1(, d 3
(Orle2 (12 h2 (h2 - a12 ha hh2 (8 )

_2 -P-SP1-82p2 + 2h 2 1 a0 alp + - h + 0 ( 8 3) '
°i2e2 = A P +2 ( a h e,) +, hh2 dl ) ( 

Observing that in the boundary layer ,i , 2 8 and E1 - 1, we may reduce the above to

022 = -Po - 8P1 + 0(8 2)

and

O1 2 ONN + 0(8 2) ,

where $ok = 86o and (2 - 6c)h2(1l, c) = 8N. Thence, returning to (7) and (8), and making
use of (6), we obtain at O(8),

c{-P n + tONNn2}N= 0 ds = 0,(9)

{-Pn 2 + tONNnl}N=O ds = 0; (10)

we note, however, that Eqs (9) and (10) amount to the same condition, since they are
different components of the same vector equation. This integral relation forms the basis for
calculating the value of the core vorticity, although we must first determine the velocity fields
at 0(1) and 0(8) and thence TONN and P in the boundary layer.

3. The flow at 0(1) and 0(6)

Writing the asymptotic expansion for the vorticity, w, in the core of S as

= o + 8o, -+ ,
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it is well known from the Prandtl-Batchelor theorem that coo is constant, and that f0o satisfies

V2I = -o

subject to boundary condition (3), which is now given by $0 = 0 on C. %P0 will not, of course,
satisfy (4), so a boundary layer of thickness 6, in which ¢o/ - and coo - 1/6, is required. The
appropriate equations here, on writing coo = /, are

qrONN = -O (11)

t0ONnOs - 0Os0N = nONN, (12)

subject to

PO=0, TON = U on N=0, (13)

1

rON-h 2(s,(C) f2 1 0 -0, as- (14)

in addition, if we denote by L the length of the curve C, then there is a periodicity
requirement given by

r0o(s + L) = o(s)), (15)

where s is the arc length which is related to 6l by s = .F06' hl(x, (c) dx. The solution of these
equations will determine the leading order flow field in the whole of S, up to the constant o00.

Although for the purposes of evaluating (9) and (10) we require the value of P at C, it
will prove necessary to determine the velocity field at 0(8) in the whole of S first. The
relevant flow equations at 0(6) are

V2', = -(,, (16)

ol 0O = 2V2o 1 (17)
UOJ 'xi+ axI X

with the no-slip boundary condition

uliti = 0 onC, (18)

and the normal outflow boundary condition, as a result of matching into the boundary layer
at 0(8),

1 = - (PN(s, ) - 'N(S, N)) dN on C. (19)

In the core of S, (17) implies

01 = W01t(0). (20)

Next, p, in the core of S is obtained by solving
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aul0Ou, aP
ao' ll + uli I axj (21)axi axi axi

by writing this as

a(uoiuli) Ui U, au1 .U ' i(au0o , auOj _ ap,
ax axi axi ax axi axj

we may reduce (21) to

da /1i··r C \.l) ap,x
ax uiu,1 + 0 i 1 + J o 0 (s) ds) axi

whence

Pl = -UOiU + wool + o 01(s) ds. (22)

In the boundary layer at C, the continuity equation at 0(8) is

au, aVl, -K ( a -0 (23)
as + aN KkN as (23)

with K(< 0) as the curvature of C, and the components of the momentum equation are

au, aUo aU, aUo apI a2U,
UO as + U1 as + V N + N as aN- 2

-K(N a 2! + ] au0 a W-NVO - UOVo) (24)aN- aN -- a -N

and

aP,
N_= -KU 0 . (25)

In addition, the boundary conditions are

U,=O,V,=O onN=O; (26)

U, - u1 (s, (c) 
+

(o +
KUo(S, 6c))N as N--o; (27)

P, -p,(s, c) - KU2(S, 6c)N as N-- . (28)

In particular, (27) and (28) may be obtained by matching to the 0(6) core flow; the
derivation of Eqs (23)-(28) may be found in Schlichting (pp. 144-146) [10] and Van Dyke
[12], albeit with a change of sign to take account of the negativity of the curvature which
arises because the centre of curvature in the current problem is on the same side of C as the
flow. Fortunately, since we are only interested in determining P, we do not require to
compute a solution to (23)-(28), but may simply write down a formal expression for
Pl(s, 0O), using (22), (25) and (28), as
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P(s, 0) = -Uo(s, c) u(s, c) )-00 1(s,5 ) - K | (U2(s, C) - U2(s, N)) dN, (29)

(remembering that Iro = 0 on C, and that qil(s, c) is given by (19)).
At this stage, there remains the outstanding problem of determining the core velocity field

at O(5), for the purposes of evaluating ul(s, c) in (29); a simultaneous difficulty is that of
determining the function w, which has arisen in the course of our analysis. In order to
attempt to do this, we consider the line integral, around any streamline (C0 , say) of the flow
field (uOi)il,2,x of the primitive-variable equivalent of (17), that is

; ( i i + U i ai)tj ds = aP + a ,j )t ds; (30)
fc i ·axi axi Co ( ax, fsl ax2 axi

using Stokes' theorem, the identity

a(u(iu1 i) aulj auOj
ax = U0

i - + U ai x i

(auli aui K (auo, au1O
ax j axi + axi axi 

and the incompressibility condition

ali 0
axi

(30) may be reduced to

c (oluoini + WoUlini) ds = 5 2 d a2Ud tj ds. (31)
Caxi axi t 1ds

Now since C0 is a streamline, the first integral on the left-hand side vanishes. For the second,
in the limit as 6 - 0, Co becomes a streamline of the core flow, for which wo is constant; this
may be taken outside the integral sign, leaving just

0o C lini ds,

which also vanishes, on using the divergence theorem and the incompressibility condition; in
addition, o)I tends to the core profile given by Eq. (20), so that

ax xix t ds- w l(o) Uoitids, as 8 --->0.

Thus, in the limit as 6 -0, Eq. (31) is satisfied regardless of the nature of the profile co,;
however, what is noteworthy is the appearance of co'(q 0 ) in the last integral. Prompted by its
appearance, we assume, not inconsistently with Eq. (31), that o1(qf0) = 0, so that wco is
constant; although this assumption may seem rather arbitrary, it does enable us to make
further analytical progress, which subsequently leads to the satisfactory results obtained in
Section 4. We will return to this point again in Section 5.
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With w1 now taken to be constant, we return to Eqs (16) and (19). Consider the
decomposition ¢i = q'i + '1, where trp satisfies

V24jl, = -m 1

subject to q* = 0 on C, and I'I satisfies

v2~ =0, (32)

subject to

1 = - f(P0(s, ) - N(, N)) dN on C. (33)

It is clear that q0i and fT* satisfy the same equations upto a constant, and hence that we need
only look for a canonical solution , with 4o0 = o0 (u0 i = oi7), 'Ip = 01l , (u l = oWi)
which satisfies

V2t = -1, (34)

subject to

:=O onC. (35)

In addition, we observe that ,1 is independent of o,, and so the only part of (9) and (10),
via (29), which depends on co is

_0mi { (jtj) 2 ni ds, i = 1, 2.

Now, since u = tinini + i7ititj, we may reduce the above expression, on using the condition
for zero normal flow, ijnj = 0, to

-WoWiji Cfijnids, i=1,2.

Applying the divergence theorem, we obtain

;c ndi ds = fj du dA (36)

Remembering that (34) can be rewritten as

a- ax i -1, i= 1,j=2,

and that ( 1i)i=,2 satisfies the usual incompressibility condition and the Euler equation, that
is
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dax

Qax a15Uj x d x, i=1,2,

where p is the canonical pressure given by p, = w p5 (and of course = 2p), we may
rewrite (36) as

axc un ds = -2 dA. (37)

Thence we obtain, on applying the divergence theorem,

if (+ax q)) dA = - ( + p)n i ds

= 0, (38)

by virtue of (35) and (6). In summary, therefore, wo may be determined using either Eqs (9)
or (10), in which (~ONN)N=O is independent of w, and in which the part of the integral of

(P1)N=O which involves wl vanishes; hence, o is independent of o.
We now proceed to demonstrate how to calculate wo) for a specific example.

4. Example

We take the bounding curve C to be an ellipse with semi-major and -minor axes a and b
respectively, so that C is given, in Cartesian coordinates, by

2 2
x y

a2 b2

It is appropriate here to introduce elliptic coordinates (s, /), which are related to (x, y)
coordinates by

x = 2 e ° cosh , cos , y = 2 e -7O sinh sin ,

where a, = *10 is the ellipse C so that

a = 2 e -'0 cosh 0 , b = 2 e 710 sinh 7 0 ,

and the eccentricity e of the ellipse is given by

e = 1 2 =sech T70 .

The canonical solution , and hence i/0 and Al*, is determined by the solution of (34),
subject to 0 = O on C. In Cartesian coordinates, this is easily found to be
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a2 2 aX2 y 1 

2(a2 + b2
) a b 

rewritten in elliptic coordinates as

2 e-2 n ° cosh2 ,0 sinh 2 ,0 (cosh 2ri cos 2 sinh2
n sin 2 1).

cosh2 O70 + sinh277 0 cosh 1 sinh2 % /

Thence, we derive the inviscid tangential velocity at the edge of the boundary layer to be

UO(s, 0>) = h2( ' *0 ) \ 0/n = 00 en° tanh 2 0o(sinh2'r 0 + sin2)L /2 ,

where

h, (Y, ,) = h 2(, 7 ) = 2 e-°(sinh 2
1 + sin2) 1' 2,

and s and f are related by s = .f (a2 sin20 + b2 COS2
0)

1/ 2 do, so that the length (L) of C, is
given by L = fo2 (a2 sin20 + b2 Cos2 0)"2 do. Lastly, in order to close the problem posed by
Eqs (11)-(15), we prescribe

3
U, = 1 + cos ; (39)

this choice is entirely arbitrary, but it does enable us to make a direct comparison with
earlier results [9].

In order to compute a numerical solution to the leading order boundary-layer equations,
the well-known Keller Box method [3] was used. However, instead of discretising (11) and
(12), it is much easier to combine these equations and to discretise the resulting first integral
with respect to N, that is

du(S, )
ONNN + UO(S, d70) ds = TON'ONs - ONNTOs;

Eqs (13)-(15) remain, except that the second half of (14) is redundant. In order to start the
integration, the initial profile was taken to be

to = UsN + (o(s, %q0) - Us)(N + e- N - 1);

this has the property that it satisfies the boundary conditions at s = 0. For a given value of
co,, the integration was carried out for as many periods as was necessary to satisfy the
periodicity condition (15); after k periods (say), the value of IP0(kL, N) - tPO((k - 1)L, N)I
was checked at each mesh point, and the integration was stopped, and a converged solution
deemed to have been obtained, if maxNE,[O N-IIPO(kL, N) - P 0((k - 1)L, N)I was less than
some prescribed tolerance.

After a converged solution has been obtained, it is then necessary to solve the Dirichlet
problem, given by (32) and (33), for ~1; the right-hand side of (33) is obtained from the
solution of the leading order boundary-layer equations. This is done most simply in (5, ,/)
coordinates, and the solution is found to be
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I- = A + E (Bn e" + C e-") cos n + E Dn sinh n sin n , (40)
n=l n=l

where

1 (2

Dn - sinh J0o f() sin ne d,

and A, B, and C, are related by

A77 o + Bo + Co = t f(E) dE,

B. enn + Cn e- n ° =- J f(6)cosned6, n=1,2,....

where f(6)= -lo (oN(s, To)- oN(S, N)) dN. Although A, Bn and C, remain undeter-
mined, this does not actually matter as far as finding woo is concerned, although we return to
this point in Section 5.

Defining

a ( , n) : = (d+,n) (41)

we now require to evaluate, for the purposes of satisfying (10), the integrals

1:= a C [-Uo((, n0o)(,(, o710)-,Oof(6)

-K() ( u2( o)- Uo2(, N)) dN] sin d ,

J:= b 'ON, cos 

where

(a2 sin 2 E + b2 cOS2
e)

3 12

ab

Using (40) and (41), we may simplify the first of these to obtain

I = aDlo1'72 ta-h 770 1)
1 2 tanh 110

- a i K()( (Uo2( ) -Uo2(, N)) dN) sin dE.

I and J were subsequently calculated for different values of wo using NAG Routine
DO1GAF, and a straightforward bisection technique was used in order to determine the
value of co for which I = J. Initial guesses for w0 were taken to be to, = 2.25, )0 2 = 2.35, and
bisection was carried out until 1 -JI < 10-7, a procedure which required around 20
iterations. To begin with, trial runs were carried out for the case of a circular boundary
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Table 1. Results for circular boundary

As AN N o0

0.1 10 2.2305O

0.05 10 2.221

0.01 20 2.232

IT25
0.01 20 2.257

5T

T-O 0.05 20 2.2565O

(formally, the limit as 770 ); from [1], the core vorticity can be determined using the
relation

U 2de = 2(, -O) d ,

which, with Us as in (39) and u0(e, o) = -woo, leads to

41
oo = -L = 2.263846.

This result provided the basis for testing the reliability of the method; computations were
carried out for a range of mesh sizes (with As denoting the mesh spacing in s and Aq
denoting the mesh spacing in 71) and two values for the location (N,) of the outer edge of the
boundary layer, the results for which are shown in Table 1.

These indicate that the combination of a coarse mesh and small value of N_ gives values of
to which are significantly lower than the true value, although the case for which N = 20,
As = r/50, A = 0.01 gives a much better result, which might be improved upon by taking an
even finer mesh and a larger value of N.. Subsequently, the meshes with N = 20 were
adopted for the numerical integration of the boundary-layer equations for an elliptic
boundary, and Richardson extrapolation was used to determine the value of oW; for the
circular boundary, this procedure gave o = 2.265.

The results obtained are summarised in Figs 3 and 4. Figure 3 is a plot of the core vorticity
coo against the ellipse eccentricity e; it was not possible to obtain a solution for values of e
exceeding 0.8, a feature that will be discussed in the next section. On the same plot, we
include for comparison the results from [9]; these provide good agreement with our results
for the dependence of co0 on e. In addition, Fig. 4 shows the dependence of the integral I
(and hence J) on e.

5. Conclusions

In this paper, we have presented an asymptotic method for calculating the uniform vorticity
(Co0) in a high Reynolds number flow with closed streamlines. Asymptotic analysis of the
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2.31

2.30

0 2.29

.

-O 2.28
0

;

0
2.27

2.26

o 03

0.0 0.4 0.8

Ellipse eccentricity (e)

Fig. 3. Plot of core vorticity (w,) vs. ellipse eccentricity (e).

Navier-Stokes equations led to an integral relation containing w0 implicitly; the integral
could be evaluated only by first considering the velocity fields at 0(1) and 0(8).
Subsequently, this was done for the case of a family of elliptical boundaries and the
particular case of a circular boundary. The method yielded good agreement with the analytic
result that exists for the case of a circular boundary in [1], and with the numerical results for
a family of ellipses obtained by Riley [9]. However, several other points arise from the
present work.

First, the fact that a solution to the boundary-layer equations could not be obtained for
values of e in excess of 0.8 is partially consistent with [9]; numerically, the equations display
a behaviour similar to that encountered in boundary-layer separation, namely that the
tangential velocity ON becomes negative at some point in the boundary layer. Riley [9],
however, was unable to obtain solutions for values of e greater than 0.77, although the slight
discrepancy is perhaps unsurprising, as Riley's criterion for determining to0 is different to the
one used here. A second observation is that the method presented here does not produce the
value of too that is obtained by solving the full Navier-Stokes equations numerically, as in

[5]. This does not, however, invalidate the current results, since there is doubt in [5] as to
whether the values for Re used there were large in an asymptotic sense, even though they
were at the upper limit for which a converged solution to the Navier-Stokes equations could
be obtained. Thirdly, we recall that we did not appear to use (9) in determining wo in Section

..... . ..... _
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1.:

1.2

1.

HI 0.7

0.

0.2

0.
0.0 0.25 0.5 0.75

Ellipse eccentricity (e)

Fig. 4. Plot of integral, I, vs. ellipse eccentricity (e) for Ai = 0.05, As = tr/50.

4. As was stated in Section 2, (9) and (10) are the two components of the first integral of the
Navier-Stokes equations, and hence amount to the same condition; however, to determine
the various terms in (9) would require us to evaluate the coefficients A, Bn and Cn in (40).
This cannot be done by considering the Dirichlet problem in elliptic coordinates, and one
would either have to find a conformal map from the interior of the ellipse to the interior or
exterior of a circle and solve the resulting Dirichlet problem, or resort to a numerical
solution; these tasks have been omitted here in view of the fact that to use (10) requires
much less effort.

Fourthly, we remark on the computing time that was required for the integrations. Given
the small values of bAt and As that were used, the fact that boundary-layer equations were
periodic and that the root for w, was found using the bisection method, it is clear that the
calculations were quite lengthy; on average, between 30 and 40 periods were required to
satisfy the periodicity condition, which was taken numerically to be

max It 0o(kL, N) - 0O((k - 1)L, N)I< e
NE[0,N I

with k an integer, and e = 0.0001. To obtain a converged solution for a particular value of wco
and e, approximately two hours of CPU time on a Sparc 2 Workstation were required.

Fifth, we must note that although the analysis of Sections 2 and 3 appears to be valid for
any laminar high Reynolds number flow with closed streamlines, it is clear that in practice
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this may not be necessarily so, since the method relies on the solution of the viscous
boundary-layer equations. The ellipses of eccentricity greater than 0.8 in Section 4 provide
one example where the method breaks down; in addition, it is likely that this situation will
also occur in flows containing inviscid stagnation points, such as the classical driven-cavity
problem.

Lastly, we return to the assumption made in Section 3 that the core vorticity at 0(8)
should be constant. With hindsight, this assumption proved to have been a favourable one to
have made: it enable further reduction of the equations, leading to the conclusion, perhaps
surprising in view of the algebraic manipulation involved, that the 0(1) core vorticity did not
explicitly depend on the 0( ) flow field; furthermore, the results obtained in Section 4 using
this assumption compared very favourably with those of Riley [9]. Given the above, it may
seem plausible therefore to suggest that the 0(6) core vorticity should be constant for high
Reynolds number flows within arbitrarily-shaped closed boundaries, although it is clear that
further work to validate this conjecture, such as the full solution of the Navier-Stokes
equations at 0(8) for a wide set of geometries, will be necessary.
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